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Numerical modelling of twisted nematic devices

By D. W. BERREMAN
Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974, U.S.A.

Over most of each active region in nematic and chiral nematic twist cells the motion
and configuration of the liquid crystal layer does not vary appreciably with position
parallel to the surfaces. In such laminar regions the statics, dynamics and optics of
the cell can be accurately simulated at low cost on a computer of moderate size, given
the appropriate physical parameters. Methods and recent advances in simulation
of laminar regions are reviewed. Bistable twist cells are simulated for illustration.
Important problems of stability and edge effects in the presence of electric fields
await solution with two- or three-dimensional simulations.
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INTRODUCTION

In recent years many laboratories have set up computer programs to simulate the behaviour of
nematic and chiral nematic displays. Several of these laboratories have published results of
investigations into the effects of varying parameters on the static optical performance of twist
cells (Baur 1980, 1981; van Doorn ez al. 1980; Birecki & Kahn 1980). Simulation of dynamic
behaviour has also been done and has led to an understanding of reverse-twist and optical bounce
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effects (van Doorn 1975; Berreman 1975 a). Interesting effects from ‘weak anchoring’ of directors
on cell surfaces have been predicted by such computer simulation (Berreman 1980) but they
remain largely unrealized (Yang 1983).

Twist cells with very high multiplexing numbers are used in some modern hand-held calcu-
lators. Computer simulation shows how parameters may be optimized to achieve such high
multiplexing numbers (Baur 1980, 1981; van Doorn ¢t al. 1980; Birecki & Kahn 1980).

We are currently interested in bistable chiral nematic twist cells (Heffner & Berreman 1982;
Berreman & Heffner 1982). Successful computer simulation of their static, dynamic and optical
behaviour has greatly enhanced our understanding of the operation of these cells. The first
dynamic simulation of a bistable twist cell was done before one was made.

Many twist cells are made with chiral dopants in an ordinary nematic liquid crystal. Our

Y, \

< experience suggests that the dopant concentration is usually low enough for the elastic, dielectric
i and optical parameters to be close to those of the nematic host. However, the usual methods
P of measuring these parameters are not applicable when the material is chiral. A comparison of
@) : static measurements of the optical behaviour or capacitance in twist cells with computer pre-
= dictions would provide a means for measuring elastic, dielectric and optical parameters of chiral
O mixtures.

LT O

= uw

MODELLING CELLS WITH ONE-DIMENSIONAL VARIATION OF DIRECTORS

Computer simulation of twist cell behaviour is done in two stages. First the orientation of the
nematic director as a function of distance from each cell surface is computed with a particular
set of parameters. For equilibrium states the required parameters are the mean-square electric
displacement field, the two dielectric and three elastic constants and the natural helicity, if the
nematic is chiral, and the orientation of the director at each surface. The electrical capacitance

[ 133 ]

PHILOSOPHICAL
TRANSACTIONS
OF

SR
o8] B
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Qf'%

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. MK
Www.jstor.org


http://rsta.royalsocietypublishing.org/

/

L A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY [\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

204 D.W.BERREMAN

per unit area in the cell is a useful by-product of this computation of director orientation. The
mean-square voltage is determined by the displacement and the capacitance. It is also easy to
integrate the components of the energy density to obtain the energies per unit area in the cell.

Once the director configuration is found, the optical transmission and reflexion may be com-
puted as a function of wavelength and viewing direction. This requires knowledge of the aniso-
tropic optical parameters of the liquid crystal. Guest-host displays may easily be simulated by
using complex numbers for the optical parameters to include absorption. Polarizers, conductive
coatings, glass and even a reflective layer may be included in the sandwich for optical compu-
tations. So long as scattering is negligible, these computations may be done quickly on a computer
by using a 4 x 4 matrix method (Smith 1965; Berreman & Scheffer 1970). Scattering must be
treated separately.

To compute dynamic effects an initial configuration, which may come from an equilibrium
computation, and five viscosity parameters are needed in addition to the previously listed
parameters. There are very few liquid crystals for which the five viscosities have been determined.
However, comparisons of observed dynamic variation of optical transmission or cell capacitance
with predictions from fluid dynamic computations are possible and would provide a means for
determining or verifying estimates of these viscosities.

There are two classes of numerical methods for finding director configurations in regions
where variation parallel to the surfacesis negligible. One class is based on direct integration of the
Euler-Lagrange differential equations for minimum Helmholtz free-energy per unit area in the
liquid crystal. In this case the director orientation and its rate of change with z position is estimated
at one point, such as one surface. The differential equations are then integrated to the opposite
surface by anumerical method. If the integration does not give the desired orientationatthe second
surface, the initial conditions are altered, within the restrictions set by the problem, until it does.

The second is the class of relaxation methods. This class may include the full dynamic problem
or it may be abbreviated by ignoring transverse motion of the fluid. In these computations an
initial configuration is assigned to the directors and the configuration is then adjusted according
to certain equations of motion that cause the energy in the liquid crystal to relax toward a
minimum.

INTEGRATING sTATIC EULER-LAGRANGE EQUATIONS

The strain free-energy density of a chiral nematic liquid crystal is described by the Oseen—
Frank equation (Oseen 1933; Frank 1958; de Gennes 1975). When the director varies only in the
z direction, normal to the suface, this free energy may be written as follows in Cartesian and polar
coordinates:

By = $hi(n2)® + Shoo(n,ny — mymy — 21/ P)? + bhog{(m,5)* + (n)® + (mp g+ my )%
ky11(0sin 0)2 + koo (f' sin2 0 — 2710/ P)? + Lkgg cos? 0{0'2 + (S’ sin 0)2}.
k;; are elastic coefficients, n; are rectangular director components and P is the 360° pitch of the
unstrained chiral nematic. The angle £ is the azimuth and 6 is the tilt measured from normal to
the surfaces. Primes represent differentials with respect to z. The electrostatic free-energy

1
2
1
2

density is 7 D2
¢ 2eh{e,n2 +e, (n2+nj)}
D2

~ 2¢,(¢,cos? 0 + ¢, sin*0)’
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where D is the displacement field and ¢, is the degenerate component of the dielectric tensor.
The Helmholtz free-energy density is the strain free-energy plus the electrostatic free-energy:
Fy = F + F,. Equilibrium configurations are such that the integral of the Helmholtz free-energy
density from one surface to the other has an extreme value, subject to the conditions imposed at
the boundaries (see, for example, Thurston & Berreman 1981).

The Gibbs free-energy density is the strain free-energy density minus the electrostatic energy
density. The integral, G, of the Gibbs free-energy with fixed applied voltage is also extremal (see,
for example, Thurston & Berreman 1981). However, since it is necessary to know the configuration
before the local voltage gradient can be defined, this fact is not useful in finding configurations.

The Euler-Lagrange equations to obtain extremal integrals of the Helmholtz free-energy are
least complicated in polar coordinates. They are

Oy _d (o) _
00 dz\o9')

and, because Fy does not depend explicitly on g,
aFH/eﬂ, =T,

where 7'is a constant of integration and is also a measure of torque about the polar axis.
The preceding Euler-Lagrange equations may be manipulated to give

. sin @ cos 6 ‘9 PO
0" = (knsin2 e 0){(k33—k11)0 + 2y (' 5in? 0 — 21/ P)

. D2(¢,—¢,)
9 2p _ 2 il L
+ kg3 8'2(cos? 6 —sin? 0) +€0 (¢, cos20 1 ¢, sin?0) 2}

, _ T/sin%0+kyy2n/P

d - .
an kgy8in%0 + kyq cos? 0

These equations combine appropriate parts from the Leslie equations (Leslie 1970) for chiral
nematics in magnetic fields and the Deuling equations (Deuling 1974) for twisted ordinary
nematics in electric fields.

A disadvantage of polar coordinates is that special care must be taken if the director comes
close to parallel with the polar axis, ¢ = 0. The difficulty is with the second, 8’ equation, which
gives a divergent value at 6 = 0 unless the torque, 7}, is zero. Fortunately 6 will be exactly zero
only at the surfaces, if at all, in non-trivial static problems. In that case itis known in advance that
no torque can be maintained and the integration actually becomes simpler. When 6 only comes
close to zero we maintain accuracy in the integration by shortening the steps so that the change
in f per step does not exceed a few degrees.

HUNTING FOR STATIC CONFIGURATIONS

Once a routine for integrating the equations for director configuration is written it is still
necessary to provide an efficient means to estimate the initial conditions necessary to obtain a
solution consistent with the desired boundary conditions. This will be illustrated by an example.
Suppose we are considering a chiral nematic cell with directors attached parallel to the surface
at one surface (6; = 90°) and at an angle 6; = 55° at the other. Suppose further that the director
at the second surface is turned § turn with respect to the first (8; = 270°). Let the elastic constants
and dielectric constants be those for E7, as listed in table 1. Let us find a configuration at 1.43 V.
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(In our program we actually aim towards V2 = 2.045.) Before we can start the integration we
must estimate the rates of change of € and £ at the first surface and also the displacement field.
(In practice we estimate ', ' sin 6 and D? because the final results vary more smoothly with these
functions when 6 or D is small.)

TABLE 1. ASSUMED PARAMETERS FOR CHIRAL DOPED E7 NEMATIC MIXTURE AT 20 °C

splay, twist and bend elastic constants (Raynes et al. 1979)
ki = 1L7x 1072 N ky = 88x 10-2N kyy = 19.5x 10-12 N

extraordinary and ordinary dielectric constants (Raynes et al. 1979)
e, =195 ¢, = 5.17

viscosity parameters (twice those for MBBA) (de Jeu 1978)
v, = 0.190Pas 9, = 0.242Pas 7, = 0.0476 Pas 7, = 0.0832Pas 17,, = 0.0130 Pas

optical parameters for 0.6328 pm light
n, = 1.513 n, = 1.728

After a few guesses we can find four different tries that lead to approximately the desired
configuration, as illustrated in figure 1. Then we assume that the final results are approximately
linearly dependent on the initial estimates:

0; = ayy + a3 D2+ ay30" + a8 sin 0,
By R Gy + a3 D%+ ay3 0’ +ay, ' sin 0,
and V2 & agy+ a0 D%+ ag30" + ag,f' sin 0.

Ficure 1. Search for a configuration at 1.43 V in an asymmetric cell with 6, = 90°, 6, = 55°, 8, = 270°,
thickness: pitch ratio /P = 0.5. Hunting is done by fixing 6, and adjusting 6", f”sin 6 and D> Liquid
crystal parameters are given in table 1. Marks are at equally spaced levels in the cell.

With the four tries we obtain four sets of parameters for these three approximate equations,
enough to determine the 12 values of a;;. We may then invert the equations and get a linear
estimate of the initial conditions that would give the desired values of 6;, #; and V2. The actual
integration with the newly found initial parameters will miss the mark slightly but the process
may be repeated, replacing a poor estimate with the newest one. Five or six iterations of this
procedure, which is easily automated, usually gives the desired results of the integration to one
part in 10000.
[ 136 ]
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Once one solution is found it is only necessary to use four of the previous approximate solutions
and alter the target value of V2 to find another solution nearby. This process can be continued
to get the variation of solutions with V2 without much further human intervention.

If plots of various functions against V are to be made, it is often unnecessary to seek solutions
at a particular value of V. In those cases we select a series of values of D2, use only three trial
solutions and the first two of the three preceding equations with a;, omitted and let the computed
values of V fall where they may. This procedure avoids a problem that arises if there are multiple
solutions at a single voltage, since the solutions are usually monotonic functions of D2.

SPECIAL TREATMENT FOR SYMMETRICGAL GELLS

In cells that have the same director tilt at each surface, configurations at moderate voltages are
usually symmetrical about the mid-plane. At the mid-plane either 6 = 90° or §' = 0, and f is
halfits final value. Itis useful to start the integration at the centre of the cell to find such solutions
because the trajectories are less sensitive to small errors in launching parameters there. If 6’ is
zero, we adjust the initial value of 6 rather than 6’ but otherwise the procedure is the same as if
we started at one surface. Such a search is illustrated in figure 2, for a cell with 8; = 360° and
surface tilts of 55°.

F1GURE 2. Search for configuration at 1.86 V in a symmetric twist cell with boundary tilts 6, = 8, = 55°, 8, = 360°,
and /P = 1. Hunting was done by using §’ = 0 at the mid-plane and adjusting 8, #’ sin 6 and D2 Liquid
crystal parameters are from table 1.

There is also one analytic solution to the trajectory equations in symmetrical cells that may be
used as a starting configuration in place of one found by trial and error. This configuration is one
of constant tilt 6 and constant 4’. Hence

B = (Be—P)/h
and the first Euler-Lagrange equation in polar coordinates may be solved for D2, giving

€,(€,cos? 0+ ¢, sin? )2

(e,—€y)

D2 = { B'{2ky9(2n /P — ' sin2 0) +kgy 8’ (sin2 6 — cos? 0)}.
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Evenif D% computed from the preceding equation is negative so that D is imaginary, the solutions
may still be continued into the physically meaningful region. The voltage on the cell is

hD
€o(€,c08*0 + ¢, sin%0) "

V=

USING STATIC CONFIGURATION RESULTS

To illustrate the usefulness of static configuration computations I shall carry through with
more computations on the two cells considered in the preceding section.

It is often very instructive to make plots of Gibbs free-energy in the cell as a function of the
square of the applied voltage (see figures 3 and 4). At zero voltage the plot is a line of nearly
constant slope. The slope depends on the capacitance of the cell when in its field-free configur-
ation. The curve then passes through a region of transition and finally follows another line of
nearly constant slope that depends on the capacitance when the directors are mostly aligned
nearly parallel to the electric field, if the liquid crystal has positive dielectric anisotropy, or
perpendicular to it if the anisotropy is negative. In cells with high multiplexing numbers the
change in slope is very abrupt. In bistable cells such curves double back to make a loop as
illustrated in figures 3 and 4. The top of the loop is formed by unstable equilibrium states that are
higher in energy than two adjacent bistable states at the same voltage, one of which is on the
steeper and one on the gentler sloping line.

3 4 \
I S S LA \\\1\3 (A
T ' ' A N 1 ' | 2V/V
S S
~
CHE T 4
10" 10t

Ficurk 3. Gibbs free-energy plotted against ¥ (nonlinear bottom scale) and V2 (linear tcp scale) for the cell in
figure 1 if it is 10 um thick. Notice that the topologically separate states (¢) with 90° twist have lower
energy than the bistable states (o) for this configuration. If they can be initiated, the bistable configurations
eventually decay through disclination lines to this 90° twist state.

Ficure 4. Gibbs free-energy plotted against V2 for cell described in figure 2 if it is 10 pm thick. O , A topologically
separate sct of states with final f = 180°, invariant mid-plane tilt 90° and final tilt 125°, which could be
reached by the same cell through a disclination line if it were energetically preferred.

Because of the ambiguity in direction of a director, one should always investigate solutions
that differ from the expected one by half a turn, and that have a final tilt that is the
supplement of the expected value, as shown at the right in figure 7. Such alternative solutions are
not accessible from the others through continuous director motion that is invariant parallel to the
surfaces. However, they may form through the passage of a disclination line across the picture
element. This will occur if the alternative solution has a lower energy than the intended ones, as
in figure 3. If the undesired state is lower in energy only briefly during switching of the cell, it may
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nothavesufficient time to develop. Neverthelessitis desirable to avoid such possibilities altogether
since transitions through disclinations are usually slow to reverse.

Another curve that is instructive is a plot of the director tilt angle at the centre of the cell as
afunction ofapplied V2. In the usual twist cell of positive dielectric anisotropy this angle (measured
from normal to the surfaces) will approach zero as the voltage increases. In a cell with high

5 Ve / V2

6
790

0y /deg

v/V =

Figure 5. Mid-plane tilt 6, plotted against V2 (linear top scale) and V (bottom scale). Data from the four con-
figurations of the preceding figure are included. The cell is bistable between about 1.5 and 2.1 V if nothing
nucleates a transition to the state of lower energy through a moving ‘wall’.

F1cure 6. Three configurations at 1.86 V and one at no field (¢). The inner (first) and third loops are stable; the
intermediate one is unstable. The first loop is the UP state; the third the pown state. Parameters are as in the
previous figure. The outermost loop is the only stable solution at no field with 360° twist.

o BB B o8y

Qo 74 %%

P
o

no field DOWN up  turn

Figure 7. Illustration of director configurations for the three stable states of figure 6 and an alternative half-turn
state. DOWN designates the state at 1.86 V with directors most nearly parallel to the surfaces, and up that
with directors most nearly normal. Tilt near the centre in the uP state is exaggerated.
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multiplexing numbers the angle will change very abruptly when some optimal operating voltage
isreached. In a bistable cell this effect is exaggerated and the curve doubles back on itself, with the
region of positive slope representing the unstable states between the stable ones. Such a curve is
shown in figure 5 for the cell with 360° azimuth change. Similar effects in non-chiral nematics
have been studied by Scheffer (1980) and Thurston (1982).

Plots of the configuration of the cell close to the operating voltage are useful in estimating the
optical properties of the cell. The data used to plot the configuration may be used in an optics
program to compute the optical properties in detail if an estimate is insufficient. Figure 6 shows
the configurations of two stable states and the intermediate unstable state of the same bistable cell
at 1.86 V. The outermost loop on the figure is the configuration of the cell with no applied field.
The optical properties of the state with no field are very similar to those of the outermost of the
bistable states because the director configuration is nearly the same. Figure 7 shows the three
stable configurations of figure 6 pictorially, together with the alternative half-turn state.

LAMINAR FLUID DYNAMICS

In dynamic problems there is frequently a point where the director passes through the direction
normal to the surfaces. The problem of evaluating £’ in that case cannot be disposed of easily as
for static solutions. In 1975 descriptions of two somewhat different ways to do computer simu-
lation of twist cell dynamics, ignoring effects of mementum and compressibility, were published
(van Doorn 1975; Berreman 19754). Van Doorn set up the Leslie-Ericksen torque equations
(Ericksen 1961; Leslie 1968; Aslaksen 19711) and used polar coordinates to describe director
orientation when the director was not too nearly parallel to the polar axis. He used x- and
y-components of the rectangular coordinates and a Lagrange multiplier when the director was
close to the poles. The author used a non-orthogonal curved-net coordinate system that was
limited in range mainly to the upper hemisphere. We have since taken van Doorn’s idea of using
rectangular coordinates and a Lagrange multiplier, but have done so in such a way that the
multiplier is never explicitly evaluated, and the three coordinates appear on an equal footing in
the equations. This method avoids changing coordinate systems and it also avoids limitations in
range of rotation.

Shear flow complicates the problem but the method can be illustrated by considering only
viscous resistance to local rotation. In that case the equations may be derived by using the same
Helmbholtz free-energy as in the statics problem and a Rayleigh dissipation function (see, for
example, Goldstein 1950) defined by the expression

Fy = gyi(ag+n5 +12).

A generalized Lagrangian function (neglecting kinetic energy) that allows the use of three
Cartesian director components while restricting the director to fixed length is
L = —F —3A(n2+nd +n2),
where A is a Lagrange multiplier on the expression for the square of the constant director length.
The equations of motion are oL _d (G_L) oF,
on; dz\om)) " on,

1 In Aslaksen (1971), sin should be replaced by cos in the middle of the matrix in equation (1.10), and r by
— I' in equation (2.7).
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When expanded, these three  torque equations’ have the form
Qi+ An; = yy i

The Lagrange multiplier may be eliminated by the following method. Multiply each of these
three equations by the corresponding director component 7; and sum them to obtain

X Qin+AX g =y, Ly,
Then notice that 3} n2 = 1 so that 3 n;%, = 0. Hence

A=—-3Q;n,.

This expression for A may be inserted in the three torque equations, which can finally be
rewritten as
Qi(nf +nf) —ny(n; Qs +m, Q) = y11hs.

The moving directors computed from these equations maintain unit total length to first order,
butitisstill necessary to avoid slow deviation by renormalizing them to unity atleast occasionally.
We do so after each step in time.

The equations just obtained will give the correct equilibrium configurations if allowed to run
for a long time. Because shear flow and forces are ignored, the computed dynamic behaviour is
somewhat slower than and different from the actual behaviour. However, the computations are
faster than those that include flow. A version of this simplified relaxation method was used to find
approximate dynamic and static equilibrium configurations (Baur ef al. 1975) before we wrote
the static configuration program.

We have not found a general Rayleigh dissipation function to describe shear flow. Instead we
use two shear-force and three torque equations derived from the Leslie-Ericksen equations
(Berreman 1975 a; Aslaksen 1971) when we include shear. We use the substitutions just described
to subject the directors to the unit-length constraint without explicitly introducing the Lagrange
multiplier into the three torque equations. The forms of the two shear equations are

O = Ry Vo + Ry Vi + X Sym;
and o-zy = Rz]_ V:Ic + R22 V,{/ + 2 Sgini,

where V; is a component of shear velocity gradient. The spatially invariant shear force o is
adjusted to make the integral of V'’ equal zero in twist cells, or the relative velocity of the surfaces
in shear experiments. The form of the three torque equations is

Qu(n} +n) —ny(n;Q; +m, Q) = Ty Vo + T Vo + 1705

The expansion of the terms @, R, S and T in these five equations is lengthy but it may be
inferred by referring to the detailed expansion into four equations in polar coordinates in
Berreman (19754), where R, S and 7 were all included in 7;; and @ was represented by A.

Ultimately the expressions for time derivatives of the directors are functions of the directors and
their first and second derivatives with respect to z. To approximate the derivatives, some scheme
that is equivalent to fitting a ‘spline’ curve through the level z in question and its near neighbours
is used. The simplest spline is a parabola for each component of the director at one level, fitted
at that level and its two nearest neighbours. Computations with this spline are fast and stable most
of the time. However, when torques are dominated by shear flow the progress becomes weakly
unstable, resulting in slow growth of a ‘zig-zag’ pattern in the director as a function of z. This
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instability is not changed by shortening the time steps. This effect can be avoided by smoothing
the components once every 20 or 30 time steps with a spline consisting of a parabola fitted by
least-squares among the five levels with two on each side of the adjusted level. When there is no
such zig-zag instability, smoothing in this way proves to have almost no effect either on the
equilibrium configurations or on the rate of flow or configuration change, even when it is done at
every step. Once the zig-zag pattern is smoothed it seldom regains an appreciable amplitude in
halfa cycle of the operation of a twist cell. Even if the zig-zag pattern is uncontrolled it ultimately
shrinks when the configuration nears the equilibrium curve, as shown in figure 8.

16
90

Ficure 8. Second, field-free, half of a twist-cell cycle showing growing zig-zag pattern when smoothing is omitted.
See figures 9 and 10 for other details, except that field remains off for 0.2 s for the outer loop in this
figure.

All of the splines mentioned are simply weighted sums of each Cartesian component at the
level in question and at one or two neighbours on either side. The weights needed to obtain
the smoothed component and the first and second derivatives depend only on the distances to
the neighbours. All these weights are computed at the start and stored in arrays for repeated use
during the simulation of the dynamic process.

As with many relaxation programs this one breaks into violent temporal oscillation if time
steps are too long. We do an approximate computation of the shortest period of oscillation or
decay of any director if it is displaced while its two nearest neighbours are fixed. If we make the
time steps shorter than this period divided by 2r we avoid the problem of oscillations.

RESULTS OF DYNAMIC SIMULATIONS

We have seen no measurements of the five viscosity parameters for E7. The viscosities of MBBA
have been determined with fair accuracy. When we used those values in computations we
obtained ‘rise-times’ from the bowN state to the uP state in our bistable cells that were about half
the observed time (Heffner & Berreman 1982). For lack of better information we shall assume
that the viscosities of E7 are twice those for MBBA (see table 1). The numbers are not really in
the right proportion because observed fall-times’ from the up state to the bowN state are not
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TWISTED NEMATIC DEVICES 213

quite as slow as these viscosities predict. Accurate values for five separate viscosities for the
commonly used nematic mixtures would be very useful.

"The possibility of simulating nematic fluid dynamics should allow for the design of simpler
experiments to measure viscosities. The program we use allows one surface of the cell to move
with respect to the other. With simulation to help in the interpretation, experimental cells with
shear may be used to determine various combinations of viscosity parameters, depending on the
orientation of the liquid crystal directors at the surfaces.

Even without accurate values for viscosity parameters it is instructive to follow a simulated
cycle in a bistable twist cell. This is done in figures 9 and 10. The minimum time that the applied
field must be held at a value other than the ‘holding voltage’ to cause a transition from one
bistable state to another is just the time required for the configuration to pass beyond a con-
figuration similar to the unstable equilibrium state between the two stable ones. From that time
on, the elastic torques will carry the cell to equilibrium. However, by increasing the switching
pulse times slightly, though not too much, the configuration will reach equilibrium in a minimum
time because the state at the end of the pulse will closely resemble the intended equilibrium state.
Such optimum times were used in figures 9 and 10.

9 - o
N \
- gl
M~ N RN
1 ,Q(((( i .\ ! 16 |6
VR 7 90 90
W N O p
N7

L

FiGure 9. Dynamic progression from the equilibrium pown state of figure 2 (o), when thrice 1.86 V (5.62 V) is
applied suddenly and continued for 0.01 s, after which the field reverts to 1.86 V. Successive configurations
are 0.002 s apart with additional field on, 0.01 s apart with additional field off. Final configuration (v) is
near equilibrium up state after 0.2 s. Viscosities are twice those for MBBA to give observed transition speed.
The cell is 10 um thick.

Ficure 10. Progression from preceding up configuration at 1.86 V (v) after suddenly switching the field off for
0.1's and then returning to 1.86 V. Successive configurations are 0.02 s apart. The measured ‘down’ tran-
sition is faster than computed with these viscosities.

Another use of the dynamics program has been to explain the movement of foreign particulate
matter and disclinations to the edges of picture elements in ordinary twist cells (Berreman &
Sussman 1979). Simulation of laminar flow shows a net movement of fluid across a picture element
after repeated cycling. This will result in slower circulation around the element. Particles and
disclinations that are weakly attached to the surface appear to be dislodged by the faster flow in
the element and lodged at its downstream boundary.

An unexpected result of the simulation of flow in twist cells appears in the explanation of
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214 D. W.BERREMAN

recent experiments of Hubbard & Bos (1981). They show that cells with a total twist of £ turn
containing chiral nematics are fast and have reduced optical bounce. This result might seem to
contradict previous indications that chirality slows the response of twist cells. However, Hubbard
& Bos find that the same backflow effect that hinders return to the field-free configuration in }
turn cells, as indicated by van Doorn (1975) and Berreman (1975 a), speeds that return in § turn
cells.

OPTICAL COMPUTATIONS

The 4 x 4 matrix method of optical computations has been adequately described by Smith
(1965) and Berreman & Scheffer (1970). The method has been used in conjunction with a fluid
dynamic program to show the complicated variations in twist-cell contrast with both time and
viewing direction (Berreman 1975 5). It has also been used to find optimal relations between cell
thickness and optical anisotropy (Baur 1980, 1981; van Doorn ef al. 1980; Birecki & Kahn 1980).
Finally, we observe that in bistable twist cells the contrast is positive in some directions and
negative in others. An example of this is shown in figure 11. As with ordinary twist cells, computer
simulation has helped us to enhance the contrast and to understand how to improve the range
of viewing directions.

.40
.16

T .37
7 .08
.39
12
.43 .33
2 .08
.28 N .30
L . .
.30 09 .n4 3
.10 .09 .07 .38
.09 .08
.05 .20 A7
.07 A1 06 .24 .05
.06 .06
.03 .25
.06 .05
.07 .00 .00 .00 .03 .25 .48 3 N
.09 .06 .06 .06 .06 .05 .08 .03 .01
.03 .25
.06 .06
N .24
.05 .06 .20 06 N7
.06 .06 .05
.07 .36
.06 .29 .45 .08
.07 .07
.22 .85 .30
.09 .09 .02
.M <38
.10 .08
.39
.12
.45 Nl
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.16

Ficure 11. Transmission of plane-polarized light by cell similar to that of figure 6 but 16 pm thick, in pown
(bottom numbers) and UP (top numbers) states, when viewed through a perfect crossed polarizer. Angles of
view are normal and 10°, 20°, 30° and 40° from normal at 30° azimuth intervals. A region of negative
contrast in one quadrant is characteristic of this cell, but it can be reduced in size and moved by altering
parameters.
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MODELLING IN MORE DIMENSIONS

The modelling alluded to so far is one-dimensional in the sense that director orientation is
presumed to vary only along the z direction, normal to the cell surfaces. There are numerous
problems that might be better understood through the simulation of configurations that vary in
at least two dimensions. For example, lateral instabilities often occur in bistable or highly multi-
plexed twist cells in experimental stages of development. Greubel discovered this when he
attempted to make a bistable, disclination-free chiral nematic twist cell with homeotropic
boundary orientation (Greubel 1974). He then described a bistable cell with one state disordered
by the instability.

Lateral variations of director configuration are crucial to ¢ dynamic-scattering’ cells. Two-
or three-dimensional simulation would also lead to better understanding of the fluid behaviour
in such scattering cells.

In addition to lateral instabilities, there is the problem of lateral variation of director orien-
tation and flow at the edges of picture elements in every twist cell. The effect of edges on static
configurations is rather short-range; being on the order of the cell thickness. However, dynamic
effects probably extend over larger distances.

Unfortunately even the analysis of two-dimensional variations is in a very rudimentary state
of development. Analytic methods will probably always be restricted to small perturbations from
laminar configurations unless inequalities in elastic constants are ignored. The complexity of
boundary conditions necessitates the use of relaxation methods in computer simulation. So far,
suchcomputersimulationshave only been used to find static configurations in the absence of fields
(Berreman 1979). Electric field patterns would have to be adjusted after each change in director
configuration unless the dielectric anisotropy is assumed to be too small to affect the pattern
significantly.

Three-dimensional solutions have been studied even less. However, Sammon (1982) and
Meiboom et al. (1983) have recently obtained static configurations that may simulate cholesterics
in cubic ¢ blue phases’ in the absence of fields. They used a fast relaxation method on a high-
speed computer, but precision was low for reasonable running times.

The optics of liquid crystals with two- or three-dimensional variations in director is extremely
complicated except in certain cases where ray optics or approximate scattering theories can be
used. Fortunately, few cases have arisen where more detailed analysis seems necessary.

CONCLUSIONS

Despite present limitations to one dimension, numerical modelling has been very useful in
understanding and optimizing the design of nematic and chiral nematic twist cells. If modelling
were implemented in two or three dimensions with electric fields it would be possible to study
many other important problems. Among these are stability against transverse distortions,
movement of configuration walls and the effects of boundaries on flow.

I wish to acknowledge the hospitality and suggestions of the liquid crystal group at the Institut
fur Angewandte Festkérperphysik in Freiburg i.Br. during some of the development of the
computer programs used in this work.
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